

CCS R&D at EPRI

Abhoyjit S. Bhown
Electric Power Research Institute

NETL CO₂ Capture Technology Project Review Meeting

August 8, 2016 Pittsburgh, PA

Electric Power Research Institute

Mission

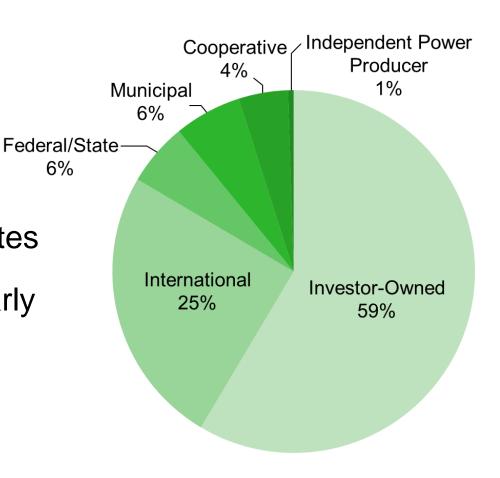
Advancing **safe**, **reliable**, **affordable** and **environmentally responsible** electricity for society through global collaboration, thought leadership and science and technology innovation

Independent

Objective, scientifically based results address reliability, efficiency, affordability, health, safety and the environment

Nonprofit

Chartered to serve the public benefit


Collaborative

Bring together scientists, engineers, academic researchers, industry experts

EPRI Members

- 450+ participants in more than 30 countries
- EPRI members generate
 approximately 90% of the electricity in the United States
- International funding is nearly 25% of EPRI's research, development and demonstrations
- Total Revenue ~\$390 M

NOAA State of Climate Report 2015

Bulletin of the American Meteorological Society, 98 (8), August 2016

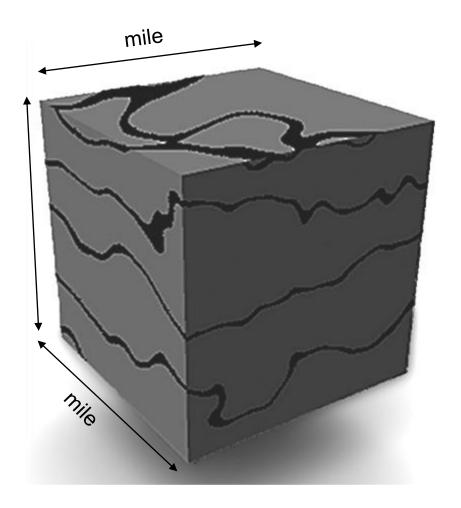
Records set:

- Highest global mean GHGs: 399.4 ppm CO₂, 1834 ppb CH₄, 328.2 ppb N₂O
- Highest global mean surface temperature. 2nd straight year.
- Highest number of extreme warm temperature events. Almost every continent
- Highest sea surface temperature
- Highest sea level
- Highest ocean heat
- Lowest levels of Artic sea ice

Drought

- Affects nearly all 1/3 global land surface. All continents.
- 14% land surface in severe or extreme drought.

Cyclones


- 101 tropical cyclones vs average of 82
- Three Category 4 storms in same basin for the first time ever

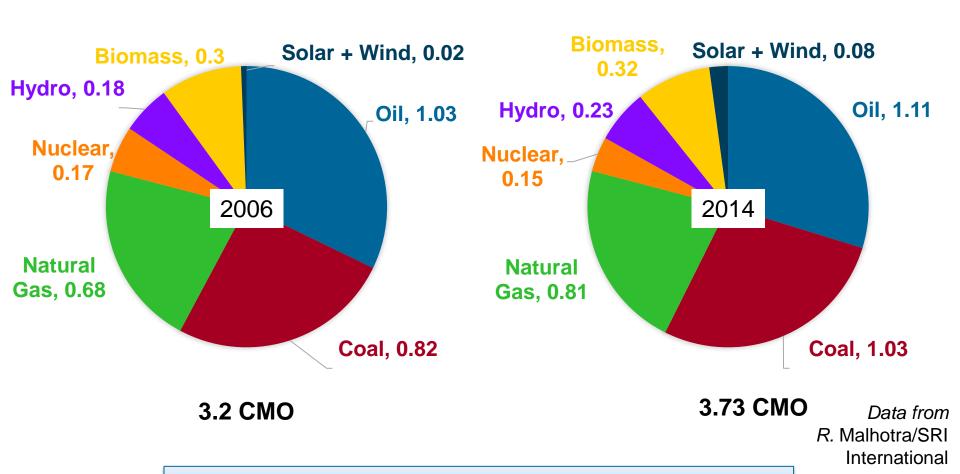
Living systems

- Plants and animals on the move
- Some areas up to 8°C higher than average
- Glaciers, permafrost, ...

A Cubic Mile of Oil

A Cubic Mile of Oil Crane, Kinderman, Malhotra

1 Cubic Mile Oil ≅1.1 trillion gal oil ≅ 26 Billion bbl oil


 \approx 153 x 10¹⁵ Btu (Quads)

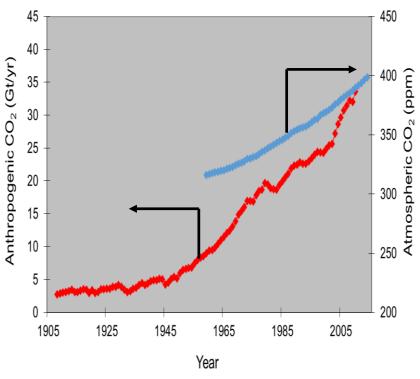
≅ 6.4 Billion tons coal

≅ 15.3 Trillion kWh electricity
(10,000 BTU/kWh)

Figure courtesy R. Malhotra/SRI International

Global Energy Consumption, CMO Units

Total Energy Consumption Increased +16.5% Fossil Fuel Share Unchanged ~80%



Growth in Fossil ≅ 4x Growth in Non-Fossil

→ CO₂ Emissions Continue

△ 2006 to 2014	CMO
Fossil	
Oil	0.08
Coal	0.21
Natural Gas	0.13
Sub-total	0.42
Non-Fossil	
Nuclear	-0.02
Hydro	0.05
Biomass	0.02
Solar + Wind	0.06
Sub-total	0.11
TOTAL	0.53

Data from R. Malhotra/SRI International

Data from http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://cdiac.ornl.gov/trends/emis/qlo 2010.html

CCS is the ONLY Option For Fossil Fuels

Energy Options by 2050

- Historical +2.6%/yr growth in energy consumption
 - → Need ~9 CMO by 2050

Courtesy: R. Malhotra

Option	Size	Availability Needed for Build b		Build by 2050
Hydro	18 GWe	50%	200 Dams	1 every 2 months
Nuclear	900 MWe	90%	2200 Plants	6 every month
Solar Parks	900 MWe	25%	7000 Parks	5 every week
Windmills	1.65 MWe	35%	3 Million	2000 every week
Solar Rooftop	2.1 kWe	20%	4.2 Billion	380,000 every day

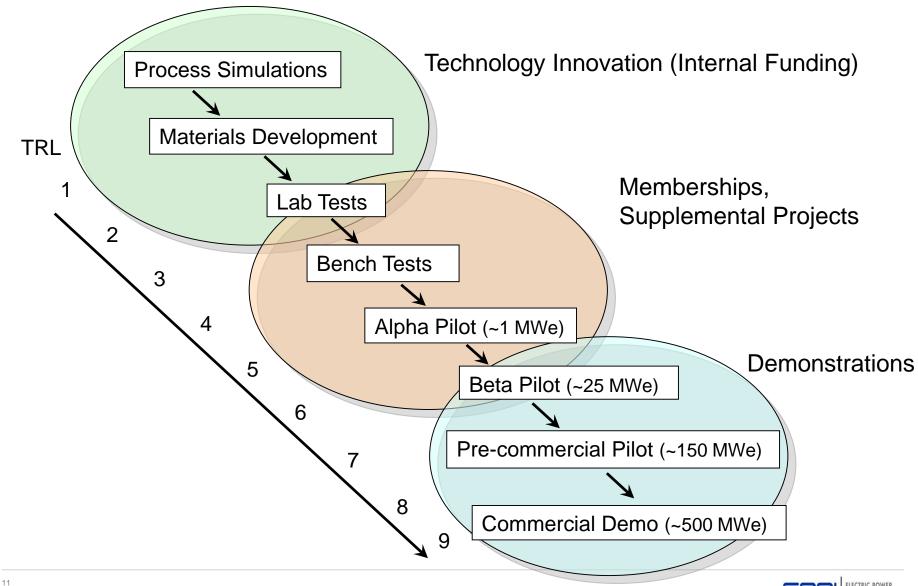
Fossil fuel reserves are 100's CMO; resources are 1000's CMO

Fossil Fuels Are Unlikely to be Displaced in the Next Few Decades

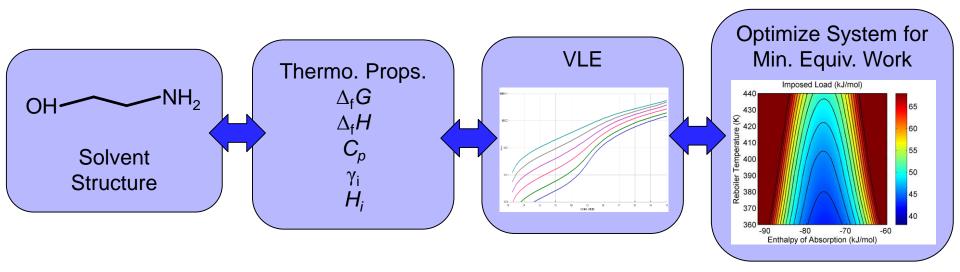
CO₂ Utilization for Chemicals

	US Production, Estimated 2015				Global Production, Estimated 2015				
		Mt	Gmol	GWe Coal at 90% Capture	GWe Gas at 90% Capture	Mt	Gmol	GWe Coal at 90% Capture	GWe Gas at 90% Capture
1	Sulfuric Acid	39.3	401.1	2.3	5.6	210.0	2.1	11.0	26.8
	Nitrogen	31.2	1114.8	6.4	15.5	123.8	4.4	22.7	55.3
	Ethylene	26.0	813.9	4.6	11.3	150.0	4.7	24.1	58.6
	Oxygen	24.4	869.4	5.0	12.1	88.7	3.2	16.2	39.5
	Lime	19.9	355.3	2.0	4.9	367.1	6.5	33.6	81.8
46	Propylene Oxide	2.1	35.5	0.2	0.5	5.5	0.1	0.5	1.2
47	Phenolic Resins	1.5	14.7	0.1	0.2	6.0	0.1	0.3	0.8
48	Calcium Carbonate	3.1	31.5	0.2	0.4	14.7	0.1	0.8	1.8
49	Butadiene (1.3)	2.7	50.5	0.3	0.7	12.9	0.2	1.2	3.0
50	Nylon Resins & Fibers	0.8	3.4	0.0	0.0	2.8	0.0	0.1	0.1
	TOTAL	453	9368	53	130	2620	57	290	708
	2015 Net Generation, GWe-yr		155	152			>1000+		
	CO2e from Electricity	2,000	45,500			10,500	239,000		
	CO2e from All Sources	6,890	156,600			37,000	841,000		

R + CO₂ → RCO₂
Limited supplies of R & limited sales of RCO₂
CO₂ Emissions >> CO₂ Utilization


Utilization Schemes Often Overlook Life Cycle Analysis

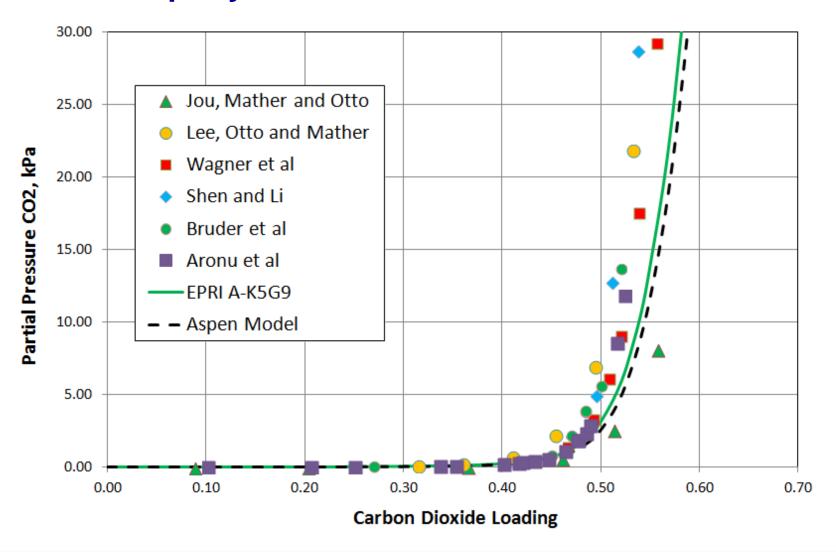
- Urea production
 - $-2NH_3 + CO_2 \rightleftharpoons H_2N-COONH_4 H \rightleftharpoons (NH_2)_2CO + H_2O$
- And H₂ is mostly generated by steam methane reforming:
 - $-CH_4 + 2H_2O \rightleftharpoons 3H_2 + CO + H_2O \rightleftharpoons 4H_2 + CO_2$
- Net: ¼ mole CO₂ per mole of urea
- 90% capture from 200 MW coal generation:
 - 1,200,000 t/y CO₂ captured \rightarrow 6,600,000 t/y urea produced
 - Represents >100% of US urea consumption


Cash Positive \neq CO₂ Negative

Post-Combustion CO₂ Capture R&D at EPRI

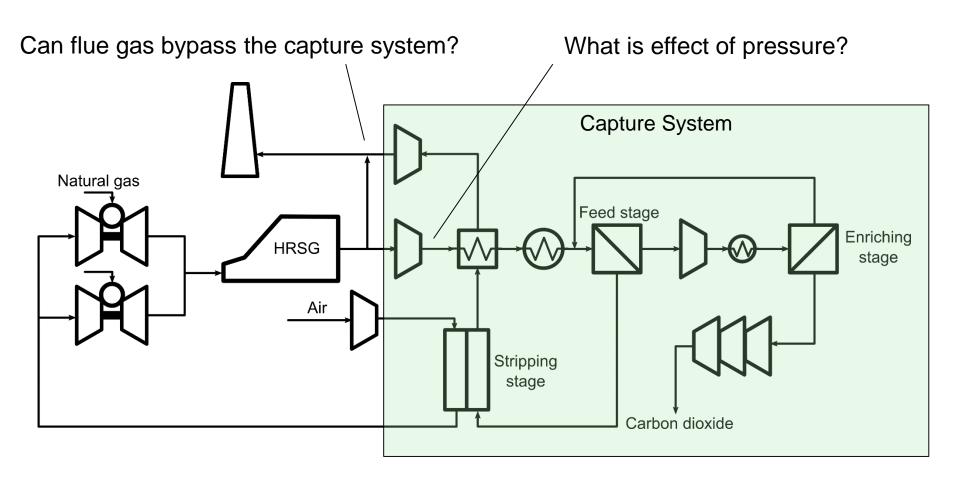
Structure-Property Model for Solvent Screening

Input Solvent Structure

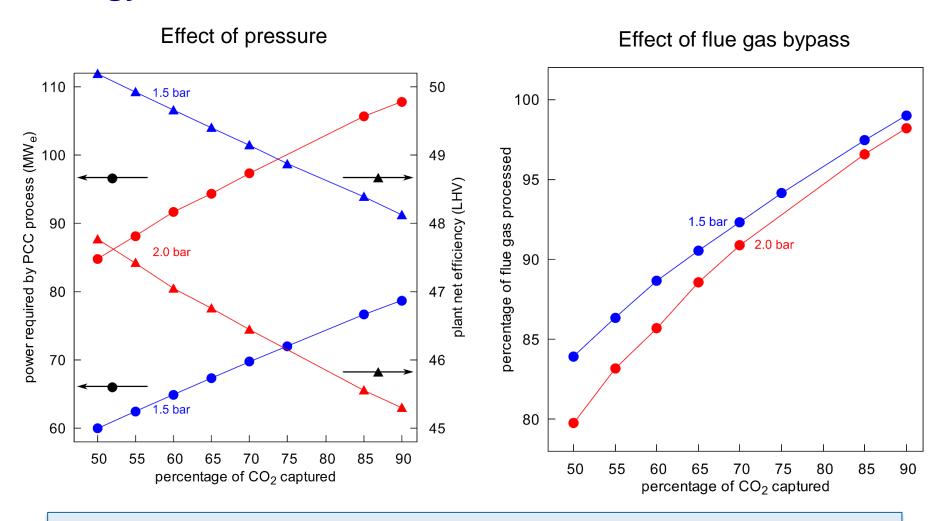

Output Imposed Load on Power Plant

Test & tune structure-property model against known solvents

Use optimal properties to suggest new solvent structures

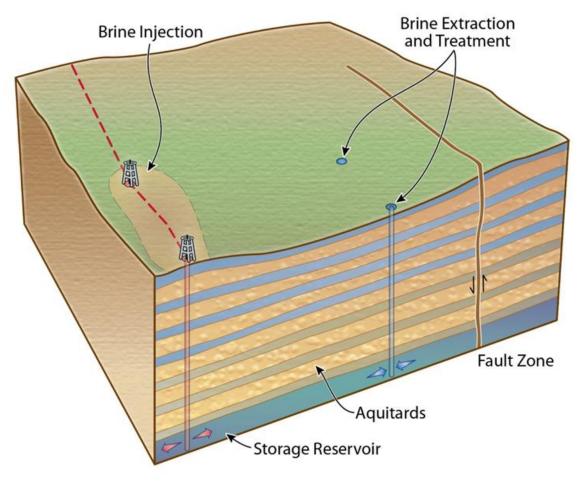


Structure-Property Model for 30 wt% MEA



Model Results for Known Solvents are Close to Experimental Data

Partial Capture on NGCC using Membranes


Partial Capture on NGCC using Membranes with Energy Minimization

Lower pressure results in less energy (at expense of capital). Partial capture of CO₂ may require processing most of the flue gas.

Brine Extraction Storage Test DOE Project DE-FE0026140

- Lower Tuscaloosa formation in SE U.S.
- Use waste water injection as a surrogate for CO₂
- Extract brine to manage reservoir pressure and control plume
- Treat brine (high TDS) to make usable water

ESD15-015

Potential Cost to CCS

- Phase I: 2015-16
 - Initial assessment indicated brine treatment will add between \$3-\$25/t CO₂ but some estimates as high as \$71/tCO₂.
 - Cost depends heavily on the amount of brine extracted, chemistry of the brine, and the particular treatment technology employed.
- Phase II: 2016-18
 - Project team will conduct field tests at Gulf Power's Plant Smith.
 - This will include a site where water treatment vendors can test their technologies on the extracted brine.

Together...Shaping the Future of Electricity